B
iologic and technologic advances generated from genetic research are having a dramatic impact on the expanding role of nurses in current healthcare practice. Important international research is under way with the Human Genome Project. The National Institutes of Health, in collaboration with researchers in the United States, England, France, Italy, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA with researchers in the United States, England, France, Italy, nome Project. The National Institutes of Health, in collaboration important international research is under way with the Human Ge-nome Project. The National Institutes of Health, in collaboration with researchers in the United States, England, France, Italy, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of hu-man life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and China, have successfully identified the basic DNA code of the human being. The goal of this research is to provide a map of the entire human genome. The genome is estimated to contain 30,000–35,000 genes that control every aspect of human life, from what a person looks like to the health problems that he or she might develop, including cancer (Baltimore, Japan, and Ch...