Effects of Darbepoetin Alfa Administered Every Two Weeks on Hemoglobin and Quality of Life of Patients Receiving Chemotherapy

Jody Folloder, RN, OCN®, CCRC

Purpose/Objectives: To review the effects on hemoglobin and quality of life of an every-two-week (Q2W) regimen of the erythropoietic agent darbepoetin alfa for treating patients with chemotherapy-induced anemia.

Data Sources: Published articles and abstracts.

Data Synthesis: Darbepoetin alfa Q2W increases hemoglobin in patients with chemotherapy-associated anemia and is well tolerated. Increased hemoglobin is associated with improvements in fatigue and energy level. A starting dose of darbepoetin alfa 3.0 mcg/kg (approximately 200 mcg for an average 70 kg patient) Q2W produces a similar level of response to recombinant human erythropoietin.

Conclusions: Darbepoetin alfa effectively treats chemotherapy-associated anemia with fewer clinic visits and fewer injections than are required with conventional erythropoietic therapy.

Implications for Nursing: The less-frequent dosing schedule of darbepoetin alfa can simplify anemia management for nurses and other clinic staff, and it offers patients greater freedom in their day-to-day activities, less dependence on caregivers, and less injection-associated discomfort.

Key Points . . .

➤ The erythropoietic agent darbepoetin alfa is effective and well tolerated when dosed every two weeks (Q2W), improving hemoglobin levels and reducing fatigue.
➤ Darbepoetin alfa dosed Q2W has similar efficacy to widely used weekly and three-times-weekly regimens of epoetin alfa.
➤ Darbepoetin alfa can improve patients’ quality of life, directly through relief of anemia symptoms and indirectly through reduction of the frequency of injections and thus the number of clinic visits.

Goal for CE Enrollees:
To enhance nurses’ knowledge about the effects of darbepoetin alfa given every two weeks on hemoglobin and quality of life in patients with chemotherapy-induced anemia.

Objectives for CE Enrollees:
On completion of this CE, the participant will be able to
1. Discuss the impact of chemotherapy-induced anemia on patients with cancer.
2. Outline the current evidence about the use of darbepoetin alfa in the treatment of chemotherapy-induced anemia.
3. Compare the use of epoetin alfa and darbepoetin alfa in the treatment of patients with chemotherapy-induced anemia.

In recent years, much attention has been focused on anemia in patients with cancer and its effect on their health-related quality of life (QOL). Anemia is highly prevalent in patients with cancer, either as a result of the cancer itself or as a consequence of treatments, be they chemotherapy, radiation, or surgery (Gropman & Itri, 1999; Johnston & Crawford, 1998; Mercadante, Gubbio, Marrazzo, & Filosto, 2000; Tchekmedjian, 2002). More than half of all patients with cancer may be affected by anemia (Gillespie, 2002; Johnston & Crawford). In addition to myelosuppressive or nephrotoxic chemotherapy, underlying causes of anemia in patients with cancer include destruction or displacement of bone marrow, bleeding, nutritional deficiencies, and chronic anemia of cancer (Erslev, 2000; Mercadante et al.). Hemolytic anemia also may occur in lymphoproliferative disorders, such as chronic lymphocytic leukemia and lymphoma, because of the destruction of red blood cells (RBCs) through an inappropriate autoimmune response (Montserrat, Bosch, & Rozman, 1997).

Anemia is associated with a range of debilitating symptoms, in particular fatigue (Cella, 1998, 2002; Curt, 2000; Holzner et al., 2002; Ludwig & Pecorelli, 2000). Fatigue can have significant effects on patients’ QOL. For example, it can reduce

This material is protected by U.S. copyright law. Unauthorized reproduction is prohibited. To purchase quantity reprints, please e-mail reprints@ons.org or to request permission to reproduce multiple copies, please e-mail pubpermissions@ons.org.
a patient’s ability to work and increase the assistance required from informal caregivers (Berndt et al., 2002), such as family members or spouses. Fatigue also may result in considerable distress for patients. Of the most frequent symptoms reported by patients with cancer in a survey of those attending an ambulatory care center, lack of energy was cited as the most severe, and 50% of patients reported symptom distress related to their disease and treatment (Singer & Patel, 2002). The negative effects of fatigue on QOL may be long-term. One study found that patients experiencing greater fatigue during chemotherapy for breast cancer had lower social functioning, vitality, and general health and more pain one year later (Byar & Berger, 2003). In addition to fatigue, patients with anemia also may experience dizziness, headache, chest pain, shortness of breath, and decreased motivation (Cella, 1998), all of which reduce well-being and affect the ability to continue with life as normal.

The high prevalence and impact of anemia in patients with cancer are especially of concern to those providing care and treatment. Despite the increasing evidence of the benefits of managing anemia, the condition still is under-recognized and undertreated in patients with cancer (Gillespie, 2002; Mock & Olsen, 2003). Studies have suggested that more than half of patients with cancer-related anemia do not receive any treatment for it (Lawless, Wilson-Royalty, & Meyers, 2000; Ludwig, Birgegard, Barrett-Lee, & Krzakowski, 2002). Oncology nurses are involved closely with symptom identification and treatment planning. Nurses must not only understand the implications of anemia in patients with cancer, but also intervene on their behalf by raising awareness among patients and healthcare providers about the significant impact of anemia on QOL and the need for appropriate monitoring. Educational resources now are more readily available to help healthcare providers achieve that goal (Buschel, Murphy, & Newton, 2002). Nurses also can help ensure that the care plan developed to manage patients’ anemia addresses their needs and enables them to maximize their QOL.

Management options for anemia in patients with cancer currently include RBC transfusions and erythropoietic agents, such as recombinant human erythropoietin (rHuEPO) (e.g., epoetin alfa and epoetin beta [Procrit®, Ortho Biotech Products, L.P., Bridgewater, NJ; NeoRecormon®, F. Hoffman-La Roche Ltd., Basel, Switzerland]) or darbepoetin alfa (Aranesp®, Amgen Inc., Thousand Oaks, CA). Because RBC transfusions are associated with several risks, including infection, immunosuppression, and adverse hemolytic reactions (Mercadante et al., 2000; Tchekmedyian, 2001), patients may be reluctant to receive allogeneic transfusions (Lee et al., 1998). Consequently, the use of erythropoietic agents is increasing in anemia management. However, a need exists for more convenient dosing schedules to minimize the frequency of clinic visits for patients requiring treatment for anemia. This review evaluates the evidence supporting the effectiveness of darbepoetin alfa administered every two weeks (Q2W) for the treatment of chemotherapy-induced anemia and its effects on health-related QOL.

Managing Chemotherapy-Induced Anemia With Erythropoietic Agents

Erythropoietic agents correct anemia by stimulating the production of RBCs (erythropoiesis) in the same way as endogenous human erythropoietin (EPO), the hormone that regulates erythropoiesis. EPO is produced primarily in the kidneys in response to hypoxia (Mercadante et al., 2000). In patients with cancer, the number of RBC progenitor cells may be decreased, or a blunted response may exist to EPO or decreased EPO production relative to the degree of anemia (Ersliev, 2000; Mercadante et al.; Miller, Jones, Piantadosi, Abeloff, & Spivak, 1990). Erythropoietic therapy can restore RBC levels, thereby alleviating anemia and its symptoms and improving patients’ QOL (Buchsel et al., 2002; Cella, 2002; Cleeeland et al., 2003; Crawford et al., 2002; Demetri, Kris, Wade, Degos, & Cella, 1998; Gabrilove et al., 2001; Glaspy et al., 1997, 2002; Littlewood, Bajetta, Nor tier, Vercammen, & Rapoport, 2001; Quirt et al., 2001; Vadhan-Raj et al., 2003).

Although recent reports of clinical trials of epoetin alfa and epoetin beta have suggested that erythropoietic treatment may be associated with adverse outcomes in some patients (Henke et al., 2003; Leyland-Jones, 2003; Wun et al., 2003), a large body of evidence supports the safe use of these agents. A three-times-weekly (TIW) schedule of epoetin alfa had been used widely because of the drug’s relatively short half-life (four to eight hours) (Abels, 1993; Demetri et al., 1998; Glaspy et al., 1997; Kunikane et al., 2001; Littlewood et al., 2001; Ortho Biotech Products, L.P., 2000; Osterborg et al., 2002). More recently, a weekly schedule of 40,000 U epoetin alfa was shown to be equally effective in patients with chemotherapy-induced anemia (Gabrilove et al., 2001) and now commonly is used in clinical practice in the United States (Rizzo et al., 2002).

Darbepoetin alfa was approved by the U.S. Food and Drug Administration in July 2002 for the treatment of anemia in patients with nonmyeloid malignancies in which anemia is associated with concomitantly administered chemotherapy. Darbepoetin alfa is a unique erythropoietic agent that acts in the same way as endogenous EPO and rHuEPO but has an approximately threefold longer half-life than rHuEPO (Egrie, Dwyer, Browne, Hitz, & Lykos, 2003), allowing less-frequent dosing (Amgen Inc., 2002). Additionally, the longer half-life permits administration in a variety of schedules, including once weekly (QW) and Q2W (Glaspy & Tchekmedyian, 2002; Vadhan-Raj et al., 2003; Vansteenkiste et al., 2002). Studies are under way to investigate the use of darbepoetin alfa every three weeks, and data so far suggest that this also is an effective regimen (Kotasek et al., 2003). The Q2W dosing regimen, however, has been used in the largest number of patients in clinical studies (Vadhan-Raj et al.) and has been adopted widely in clinical practice (Boccia, Davidson, Tomita, Green, & Smith, 2003; Schwartzberg et al., 2003; Thames, Yao, Scheifele, & Alley, 2003).

Hematologic Effects of Darbepoetin Alfa Administered Every Two Weeks

Dose-Finding Studies

In a dose-finding study of darbepoetin alfa, a variety of QW and Q2W doses were evaluated (Glaspy et al., 2002). The study established that the minimum effective weekly dose of darbepoetin alfa is 1.5 mcg/kg. In addition, the study showed that the dosing interval of darbepoetin alfa could be extended from QW to Q2W with no requirement for an
increased weekly dose (i.e., 3 mcg/kg Q2W was equivalent to 1.5 mcg/kg QW).

Weight-Based Dosing Studies

The largest study of darbepoetin alfa Q2W in the management of chemotherapy-induced anemia that has been published to date was an ongoing, 16-week, open-label, community-based study of 1,173 patients (Vadhan-Raj et al., 2003). The study was designed to develop a screening tool to assess functional capacity in patients with nonmyeloid malignancies and anemia (hemoglobin ≤ 11.0 g/dl) receiving chemotherapy. Patients currently receiving chemotherapy, with at least eight additional weeks of treatment planned, received darbepoetin alfa 3.0 mcg/kg Q2W for a total of eight doses (16 weeks of treatment and observation). After three doses, if hemoglobin levels had not increased by ≥ 1.0 g/dl from baseline, the darbepoetin alfa dose was increased to 5.0 mcg/kg Q2W. In the interim analysis of this study, the hematologic effects of darbepoetin alfa were evaluated, and the relationship between hemoglobin level and patient-reported fatigue scores was investigated.

As shown in Figure 1, hemoglobin increased over time during the study. The mean increase in hemoglobin from baseline to the end of treatment was 2.1 g/dl for patients who received the full 16 weeks of therapy. Seventy-one percent of patients had a hemoglobin response (an increase in hemoglobin of ≥ 2.0 g/dl from baseline in the absence of an RBC transfusion), and 84% of patients had a hematopoietic response (hemoglobin response or hemoglobin correction to ≥ 12.0 g/dl) during the treatment period (Kaplan-Meier estimates of proportion) (Vadhan-Raj et al., 2003). Thus, the majority of patients treated with darbepoetin alfa Q2W experienced a correction of or clinically meaningful improvement in hemoglobin level.

Fixed-Dosing Studies

Early data from studies of patients treated in clinical practice and from clinical trial simulation suggest that a fixed dose of darbepoetin alfa 200 mcg Q2W (equivalent to 3.0 mcg/kg based on an average patient weight of 70 kg) would be equally effective in most patients (Jumbe, Yao, Rovetti, Rossi, & Heatherington, 2002; Thames et al., 2003). In a phase IV, open-label, community-based clinical study, anemic patients (hemoglobin ≤ 11.0 g/dl) with nonmyeloid malignancies (N = 1,127) received darbepoetin alfa 200 mcg Q2W for as long as 24 weeks, with dose escalation to 300 mcg Q2W after four weeks if hemoglobin increased < 1.0 g/dl from baseline (Gabrilove et al., 2003). In an interim analysis of data through week 13 of the study, 65% of evaluable patients achieved a hematopoietic response, and the incidence of RBC transfusions decreased by 40% from months 1 through 3. Several chart reviews also have confirmed the effectiveness of this fixed dose of darbepoetin alfa Q2W in clinical practice (Reeves, Wallace, & Patton, 2003; Schwartzberg et al., 2003).

Measuring the Effects of Darbepoetin Alfa Given Every Two Weeks on Health-Related Quality of Life

Fatigue

In addition to increasing patients’ hemoglobin levels, treatment with darbepoetin alfa Q2W also can improve QOL. Fatigue, one of the most incapacitating symptoms of anemia, can be assessed using the Functional Assessment of Cancer Therapy-Fatigue (FACT-F) questionnaire (Cella, 1998; Yellen, Cella, Webster, Blendowski, & Kaplan, 1997), which is administered to patients at baseline and during treatment with darbepoetin alfa. As part of the FACT-F, patients are asked to indicate how true statements such as “I feel fatigued,” “I have energy,” and “I need help doing my usual activities” were for them during the previous seven days.

The maximum score on the FACT-F is 52 points, which indicates that no fatigue is present. The average FACT-F score for the U.S. population is about 44 points, compared with an average of 40 points for the nonanemic cancer population and an average of 24 points for the anemic cancer population (Cella, Lai, Chang, Peterman, & Slavin, 2002). In the large, community-based study of darbepoetin alfa (Vadhan-Raj et al., 2003), the mean FACT-F score at baseline was 26 points. Cella, Eton, Lai, Peterman, and Merkel (2002) have established that an increase of more than three points on the FACT-F subscale represents a clinically important improvement in fatigue. In the Vadhan-Raj et al. study, after eight weeks of treatment with darbepoetin alfa (four doses), the mean FACT-F score had increased by 4.6 points, indicating that, on average, a meaningful improvement in fatigue had occurred. After 16 weeks, the mean score improved by 6.8 points, indicating substantial improvement in fatigue on average. On an individual patient basis, 61% of patients in the study experienced a clinically important reduction in fatigue after treatment with darbepoetin alfa (Vadhan-Raj et al.).

As shown in Figure 2, improvement in fatigue is associated closely with increases in hemoglobin, such that the greatest
relief in fatigue occurred in patients with the highest increase in hemoglobin (Glasy et al., 2002; Vadhan-Raj et al., 2003). Of note, patients did not need to have moderate to severe anemia (hemoglobin < 10.0 g/dl) to experience a reduction in fatigue; even patients with only mild anemia (hemoglobin ≥ 10.0 g/dl) at baseline had noticeable improvements in their fatigue symptoms.

Energy Level

Energy levels were assessed in patients treated with darbepoetin alfa Q2W using the Energy Numerical Rating Grade, a self-reported visual analog scale developed for use in studies of darbepoetin alfa. Patients record their energy levels over the previous four weeks on a scale of 1–10 (Vadhan-Raj et al., 2003). The score then was converted to a 0–100 scale to allow comparisons with published results of similar scales. Mean increases from baselines of 7.3 and 12.5 points, respectively, from a mean baseline score of 45.4 points were observed after 8 and 16 weeks of treatment with darbepoetin alfa. Thus, patients treated with darbepoetin alfa experienced an improvement in their energy levels of almost 30% on average after 16 weeks.

Symptom Burden

In the study of darbepoetin alfa administered as a fixed dose of 200 mcg Q2W, a new tool for assessing the impact of symptoms in patients with cancer, the M.D. Anderson Symptom Inventory was used (Cleeland et al., 2000). This also was developed and validated to measure symptom severity and its interference with functional capacity; it includes 19 questions, 13 relating to core symptoms and 6 to symptom interference with life activities. Five symptoms thought to be associated with anemia (fatigue, distress, sleep disturbance, lack of appetite, and pain) were prespecified for analysis in the protocol. In an interim analysis, change in these symp-toms after 12 weeks of treatment with darbepoetin alfa was analyzed (Cleeland et al., 2003). Fatigue, distress, sleep disturbance, and lack of appetite scores all improved from baseline, indicating decreased symptom severity. Analysis of the fatigue scores by change in hemoglobin suggests that improvement in fatigue was related strongly to an increase in hemoglobin levels.

Safety of Darbepoetin Alfa Every Two Weeks

Darbepoetin alfa Q2W has been well tolerated in clinical studies, with the reported adverse events typical for a population of patients with cancer receiving chemotherapy (Glasy & Tchekmedyian, 2002; Kotasek et al., 2003; Vadhan-Raj et al., 2003; Vansteenkiste et al., 2002). No antibodies to darbepoetin alfa have been detected in clinical studies, and no clinical symptoms or sequelae suggesting the presence of neutralizing antibodies have been observed (Glasy & Tchekmedyian; Kotasek et al.; Vadhan-Raj et al.; Vansteenkiste et al., 2002). The safety profiles of darbepoetin alfa and epoetin alfa are similar (Amgen Inc., 2002; Glasy et al., 2002; Mirtsching et al., 2003). No detriment to survival or disease progression has been reported to date in clinical trials of darbepoetin alfa (Hedenus et al., 2003; Vansteenkiste et al., 2002; Vansteenkiste, Tomita, Rossi, & Pirker, 2004).

Comparison of Darbepoetin Alfa Every Two Weeks and Epoetin Alfa

Epoetin alfa is used widely to treat chemotherapy-induced anemia in patients with cancer and is effective in increasing hemoglobin levels, decreasing transfusion requirements, and improving energy levels and QOL (Buchsel et al., 2002; Cella, 2002; Crawford et al., 2002; Demetri et al., 1998; Gabriole et al., 2001; Glasy et al., 1997; Littlewood et al., 2001; Quirt et al., 2001). Nurses should understand how darbepoetin alfa administered Q2W compares with epoetin alfa in terms of efficacy and convenience to patients and their caregivers. The relative cost of the two treatments also is of interest, as it may be a factor when healthcare providers are considering the options for anemia management.

Comparison of Hematologic Efficacy

Darbepoetin alfa Q2W demonstrated similar efficacy to the epoetin alfa QW control group in an early dose-finding study (see Table 1) (Glasy & Tchekmedyian, 2002). Because this comparison was based on small numbers of patients, Mirtsching et al. (2003) performed a larger analysis combining data from three studies of darbepoetin alfa to obtain a larger sample size for comparison. The meta-analysis confirmed the similar efficacy and safety of darbepoetin alfa at a starting dose of 3.0 mcg/kg Q2W (N = 1,206) and epoetin alfa at a starting dose of 150 U/kg TIW or 40,000 U QW (N = 115). Both treatments had a similar rate of RBC transfusion: 15% for the darbepoetin alfa group and 14% for the epoetin alfa group.
The results of the large, community-based study of darbe-
poetin alfa ... g/dl
2,289
NR
61%
2.0 g/dl
2,964
NR
68%
1.8 g/dl
NR—not reported
 Darbepoetin Alfa
Epoetin Alfa

Proportion of patients achieving hematopoietic response (95% confidence interval) was similar for darbepoetin alfa and epoetin alfa across all studies. The chart reviews indicated that the most common doses of darbepoetin alfa 200 mcg Q2W and epoetin alfa 40,000 U QW were allowed for patients requiring a RBC transfusion during the study (16% and 17%, respectively). Data on the effects of the two agents on QOL in these comparative studies have not yet been published. However, the studies were designed to validate the Patient Satisfaction Questionnaire for Anemia (PSQ-An) tool. This was found to be valid, feasible, and reliable, although future studies need to be conducted with the PSQ-An to assess the impact of anemia on patients and caregivers.

A line of evidence supporting the comparable hematologic effects of the two agents comes from recent retrospective chart reviews of patients with chemotherapy-induced anemia treated at hospitals and community centers throughout the United States (Boccia et al., 2003; Patton, Reeves, & Wallace, 2003; Reeves et al., 2003; Schwartzberg et al., 2003). The chart reviews indicated that the most common doses of the two agents used in community practice (darbepoetin alfa 200 mcg Q2W and epoetin alfa 40,000 U QW) are associated with similar changes in hemoglobin and similar rates of RBC transfusion, with a similar frequency of dose increase.

Table 1. Comparison of Efficacy Results for Darbepoetin Alfa and Epoetin Alfa

<table>
<thead>
<tr>
<th>Variable</th>
<th>Epoetin Alfa (40,000 U QW)</th>
<th>Darbepoetin Alfa (mcg/kg Q2W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients included in analysis</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>Proportion achieving hemoglobin response (95% confidence interval)</td>
<td>60% (40%–79%)</td>
<td>60% (39%–80%)</td>
</tr>
<tr>
<td>Proportion achieving hemoglobin correction (95% confidence interval)</td>
<td>53% (35%–72%)</td>
<td>57% (36%–79%)</td>
</tr>
<tr>
<td>Number of patients included in analysis</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Red blood cell transfusion incidence from week 5 to the end of the treatment phase (95% confidence interval)</td>
<td>36% (0%–87%)</td>
<td>4% (0%–11%)</td>
</tr>
</tbody>
</table>

† Increased to 60,000 U QW at week 6 in patients with an inadequate initial response

‡ Kaplan-Meier proportion

Q2W—every two weeks; QW—once weekly

The results of the large, community-based study of darbepoetin alfa Q2W (Amgen Inc., data on file; Vadhan-Raj et al., 2003) also can be benchmarked against results of similarly designed studies of epoetin alfa given TIW or QW (Demetri et al., 1998; Gabrilove et al., 2001; Glaspy et al., 1997) (see Table 2). Hemoglobin response, hematopoietic response, change in hemoglobin, and incidence of transfusions were similar for darbepoetin alfa and epoetin alfa across all studies.

To directly analyze the similar findings seen with darbepoetin alfa Q2W and epoetin alfa QW treatment regimens, three comparative trials have been conducted, each in patients with a specific tumor type (breast, lung, or gynecologic cancer). In the trials, anemic patients (hemoglobin ≤ 11.0 g/dl) were randomized in a 1:1 ratio to receive either darbepoetin alfa 200 mcg Q2W or epoetin alfa 40,000 U QW for as long as 16 weeks. Dose increases to 300 mcg Q2W for darbepoetin alfa and 60,000 U QW for epoetin alfa were allowed for patients who did not have at least a 1.0 g/dl increase in hemoglobin after four weeks of treatment. Final analysis of data from pooled findings of the three studies suggests that both treatment regimens appear to achieve comparable outcomes (Schwartzberg et al., 2004). The mean change in hemoglobin from baseline to the end of treatment was 1.4 g/dl for patients receiving darbepoetin alfa and 1.5 g/dl for those receiving epoetin alfa, with a similar proportion of patients in both treatment groups requiring an RBC transfusion during the study (16% and 17%, respectively). Data on the effects of the two agents on QOL in these comparative studies have not yet been published. However, the studies were designed to validate the Patient Satisfaction Questionnaire for Anemia (PSQ-An) tool. This was found to be valid, feasible, and reliable, although future studies need to be conducted with the PSQ-An to assess the impact of anemia on patients and caregivers.

A line of evidence supporting the comparable hematologic effects of the two agents comes from recent retrospective chart reviews of patients with chemotherapy-induced anemia treated at hospitals and community centers throughout the United States (Boccia et al., 2003; Patton, Reeves, & Wallace, 2003; Reeves et al., 2003; Schwartzberg et al., 2003). The chart reviews indicated that the most common doses of the two agents used in community practice (darbepoetin alfa 200 mcg Q2W and epoetin alfa 40,000 U QW) are associated with similar changes in hemoglobin and similar rates of RBC transfusion, with a similar frequency of dose increase.

Relative Cost of Darbepoetin Alfa and Epoetin Alfa

To examine and compare the costs associated with two therapies of equivalent effectiveness, a cost-minimization analysis can be performed (Bootman, Townsend, & McGhan, 1996). A simple cost-minimization model was designed (see Table 3) using assumptions based on the data from Schwartzberg et al.’s (2003) retrospective chart review. Costs related to treatment are based only on acquisition costs and are calculated using the average wholesale prices for both products: $4.99 per mcg for darbepoetin alfa and $13.36 per 1,000 units for epoetin alfa, from the December 2003 Red Book (Red Book™, 2003). Assuming that the effectiveness of darbepoetin alfa 200 mcg Q2W and epoetin alfa 40,000 U QW are the same, and that a dose escalation occurs for both treatments in 15% of patients at week 7 (to darbepoetin alfa 300 mcg Q2W or epoetin alfa 60,000 U QW), the average cost savings over 16 weeks of therapy using darbepoetin alfa for 100 patients, based on the model, would be $592.95, or approximately 7%.

Table 2. Efficacy of Darbepoetin Alfa and Epoetin Alfa in Community-Based Studies

<table>
<thead>
<tr>
<th>Variable</th>
<th>Darbepoetin Alfa</th>
<th>Epoetin Alfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>1,173</td>
<td>2,030</td>
</tr>
<tr>
<td>Proportion achieving hemoglobin response</td>
<td>58%</td>
<td>53.4%</td>
</tr>
<tr>
<td>Proportion achieving hematopoietic response</td>
<td>71%</td>
<td>NR</td>
</tr>
<tr>
<td>Mean change in hemoglobin after 16 weeks</td>
<td>2.1 g/dl</td>
<td>1.8 g/dl</td>
</tr>
</tbody>
</table>

NR—not reported
Discussion
Erythropoietic Therapy Improves Quality of Life

A discernible need exists to treat anemia in patients receiving chemotherapy. Management of chemotherapy-induced anemia has been shown to be one of only two interventions that have consistent, positive effects on patients’ fatigue levels (the other is aerobic exercise) (Nail, 2002). The use of erythropoietic agents improves patients’ overall health-related QOL, by decreasing fatigue and increasing energy levels, as cited in the studies reviewed for this article. In an analysis of data from two additional clinical trials in which patients with chemotherapy-induced anemia were treated with erythropoietic therapy, a clinically important reduction in fatigue (as measured by the FACT-F questionnaire) was associated with a reduction in levels of depression and anxiety (Amorajabi, Tchekmedyian, & Kallich, 2003; Tchekmedyian, Kallich, McDermott, Fayers, & Erder, 2003).

Benefits of Less-Frequent Dosing of Erythropoietic Agents

Patients with cancer receive multiple treatments for the primary disease and as supportive therapy. However, frequent clinic visits to receive treatment may be a burden for patients and caregivers. The time and expense involved may mean that patients have to take leave from work, change or cancel social functions, and neglect household responsibilities. Often, difficulties with transportation are cited in connection with clinic visits (Haithcox, Ramnes, Lee, Lu, & Lyman, 2003; Moore, 2002). Out-of-pocket expenses are an added burden (Meehan et al., 2002). Anemic patients experiencing fatigue may find frequent clinic visits particularly taxing because they place an extra burden on already-depleted energy levels (Moore, Fortner, & Okon, 2003). Frequent visits may have psychological effects, reinforcing patients’ self-perception as “patients with cancer” and causing increased anxiety and even depression (Moore; Moore et al.). Caregivers also may be placed under additional strain; for example, they may need to take repeated time off work to accompany patients to the clinic (Moore; Haithcox et al.).

Those closely involved with patients are likely to appreciate the advantages of treatment that reduces the number of injections, as long as the effectiveness of the treatment is not impaired. Patients also indicate this preference. In an observational study of patients with cancer receiving supportive therapy, most patients expressed a wish for longer-acting treatment that would require fewer injections (Haithcox et al., 2003). Recent data also have confirmed that the use of long-acting growth factors to treat cancer-associated anemia and neutropenia results in significant time savings for clinic staff as a consequence of fewer clinic visits required (Beveridge et al., 2003).

Table 3. Estimated Acquisition Costs for Darbepoetin Alfa Every Two Weeks and Epoetin Alfa Every Week for 100 Patients Over 16 Weeks of Treatment

<table>
<thead>
<tr>
<th>Darbepoetin Alfa</th>
<th>Epoetin Alfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosed Every Other Week (mcg)</td>
<td>Dosed Once Weekly (U)</td>
</tr>
<tr>
<td>Week</td>
<td>No Dose Escalation (n = 85)</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>11</td>
<td>200</td>
</tr>
<tr>
<td>12</td>
<td>200</td>
</tr>
<tr>
<td>13</td>
<td>200</td>
</tr>
<tr>
<td>14</td>
<td>200</td>
</tr>
<tr>
<td>15</td>
<td>200</td>
</tr>
<tr>
<td>16</td>
<td>200</td>
</tr>
<tr>
<td>Total costs</td>
<td>$835,825</td>
</tr>
</tbody>
</table>
effective management strategies for the symptoms associated with this condition. Darbepoetin alfa, with a longer half-life than epoetin alfa, enables Q2W dosing and has the potential to substantially improve the health-related QOL of patients with chemotherapy-induced anemia, directly through relief of the symptoms of anemia and indirectly through reduction of the number of clinic visits and injections. This treatment adds greater flexibility to the management of anemia and increases the therapeutic options available to patients and healthcare providers. Given the favorable outcomes seen in the majority of those treated with darbepoetin alfa Q2W, “less is more” in improving the QOL of patients with chemotherapy-induced anemia.

Claire Wilson and Wanda Krall, PhD, assisted the author editorially with the preparation of this article.

Author Contact: Jody Folloder, RN, OCN®, CCRC, can be reached at jfolloder@mdanderson.org, with copy to editor at rose_mary@earthlink.net.

References
Glaspy, J.A., & Tchekmedyian, N.S. (2002). Darbepoetin alfa administered every two weeks alleviates anemia in cancer patients receiving chemotherapy, Oncology, 16(10, Suppl. 11), 23–29.

Patton, J., Reeves, T., & Wallace, J.F. (2003, May). Darbepoetin alfa 200 mcg every two weeks (Q2W) and epoetin alfa 40,000 U every week (QW) in chemotherapy-induced anemia patients result in similar initial hemoglobin outcomes. Presented at the International Society for Pharmacoeconomics and Outcomes Research 8th Annual International Meeting, Arlington, VA.

The continuing education examination and test form for the preceding article appear on the following pages.
ONF Continuing Education Examination

Effects of Darbepoetin Alfa Administered Every Two Weeks on Hemoglobin and Quality of Life of Patients Receiving Chemotherapy

Credit Hours: 1.1
Passing Score: 80%
Test ID # 05-32/1-01

The Oncology Nursing Society is accredited as a provider of continuing education (CE) in nursing by the
• American Nurses Credentialing Center’s Commission on Accreditation
• California Board of Nursing, Provider #2850.

CE Test Questions

1. Cancer-related anemia can occur as a consequence of
 a. Hepatotoxic chemotherapy.
 b. Displacement of bone marrow.
 c. Dehydration.
 d. Decreased activity level.

2. Fatigue associated with cancer-related anemia has been found to
 a. Decrease a patient’s willingness to ask for assistance.
 b. Be well tolerated by people undergoing treatment for cancer.
 c. Have only short-lived impact on quality of life.
 d. Interfere with the ability to perform usual work.

3. What percentage of patients with cancer does not receive treatment for their anemia?
 a. 10%
 b. 30%
 c. 50%
 d. 70%

4. Which of the following factors would be most likely to contribute to cancer-related anemia?
 a. A weak erythropoietic response to the release of erythropoietin
 b. An elevation in the number of red blood cell precursors in the periphery
 c. A decrease in the production of erythropoietin by the liver
 d. An increase in erythropoietin production in response to anemia

5. The most commonly used dosing schedule for darbepoetin is
 a. 150 mcg three times each week.
 b. 2.5 mcg/k once each week.
 c. 3 mcg/k once every two weeks.
 d. 200 mcg once every three weeks.

6. Which of the following tools would be most helpful in evaluating the impact of fatigue and anemia on health-related quality of life in a research or clinical setting?
 a. Fatigue Measurement Index
 b. Functional Assessment of Cancer Therapy-Fatigue
 c. Energy Numerical Rating Grade
 d. M.D. Anderson Symptom Inventory

7. Decreases in fatigue have been shown to be correlated positively with
 a. Higher doses of darbepoetin.
 b. More frequent dosing of erythropoietin.
 c. Increased physiologic iron stores.
 d. Increases in hemoglobin.

8. Patient education materials related to darbepoetin should indicate that the most common side effect is
 a. Injection-site pain.
 b. Allergic reaction.
 c. Bone pain.
 d. Decreased efficacy over time.

9. In people with cancer, epoetin alfa has been proven to
 a. Improve energy levels and increase transfusion requirements.
 b. Decrease bleeding risk and mortality rate.
 c. Increase hemoglobin levels and improve quality of life.
 d. Decrease transfusion requirements and infection rates.

10. When compared with epoetin alfa, darbepoetin alfa treatment leads to a
 a. Similar hematopoietic response.
 b. Greater change in hemoglobin.
 c. Lower incidence of red blood cell transfusion.
 d. Slower increase in red blood cell counts.

11. When determining the best erythropoietic growth factor to use for a patient, remember that in comparison to epoetin alfa, darbepoetin alfa costs are
 a. Higher over a two-week period.
 b. Calculated with consideration of dosing schedule.
 c. An average of 15% less over the course of therapy.
 d. Not important because of the increased efficacy.

12. When choosing interventions for a person with cancer-related fatigue, which of the following has been shown to have a consistently positive effect on fatigue levels?
 a. Administration of stimulants
 b. Relaxation exercises
 c. Strength training
 d. Management of anemia

13. Patients who receive erythropoietic agents using a less-frequent dosing schedule may experience
 a. Increased anxiety about less-frequent follow-up.
 b. Higher out-of-pocket costs.
 c. Less interference with other responsibilities.
 d. Longer clinic visits with more evaluations.

14. Administering darbepoetin alfa every two weeks to pa-
Effects of Darbepoetin Alfa Administered Every Two Weeks on Hemoglobin and Quality of Life of Patients Receiving Chemotherapy (Test ID # 05-32/1-01)

To receive continuing education (CE) credit for this issue, simply
1. Read the article.
2. Oncology Nursing Society members may take the test and get results immediately on the ONS Web site. Simply log on to www.ons.org and click on Oncology Nursing Forum under the Publications heading. Use your ONS membership number to access the site, select the issue you wish to use, scroll down to find the CE test, and follow the instructions. Members who opt to take the CE test via the ONS Web site can do so at no charge.
3. To enroll via the mail, record your answers on the form below and complete the program evaluation (you may make copies of the form). Mail the completed answer/enrollment form along with a check or money order for $15 per test payable to the Oncology Nursing Society. Payment must be included for your examination to be processed.
4. The deadline for submitting the answer/enrollment form is two years from the date of this issue.
5. Contact hours will be awarded to RNs who successfully complete the program. Successful completion is defined as an 80% correct score on the examination and a completed evaluation program. Verification of your CE credit will be sent to you. Certificates will be mailed within six weeks following receipt of your answer/enrollment form. For more information, call 866-257-4667, ext. 6314.

Instructions: Mark your answers clearly by placing an “x” in the box next to the correct answer. This is a standard form; use only the number of spaces required for the test you are taking.

<table>
<thead>
<tr>
<th>Question</th>
<th>Option A</th>
<th>Option B</th>
<th>Option C</th>
<th>Option D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name ___________________________ Telephone # ___________________________
Address ___________________________ Last four digits of social security # ____________
City __________________________ State __________ Zip __________
State(s) of licensure/license no(s). ___________________________ ONS membership # ___________________________

Program Evaluation

<table>
<thead>
<tr>
<th>Item</th>
<th>Not at all</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

My check or money order payable to the Oncology Nursing Society is enclosed. U.S. currency only. (Do not send cash.)
After completing this form, mail it to: Oncology Nursing Society, P.O. Box 3510, Pittsburgh, PA 15230-3510.
For more information or information on the status of CE certificates, call 866-257-4667, ext. 6314.