Individuals who have a diagnosis of lung cancer with actionable genetic subtypes are poised to greatly benefit from advances in precision medicine. Lung cancer is consistently the cause of more than 100,000 deaths per year in the United States and is the number one cause of death among all cancer types (Krist et al., 2021). In 2003, the human genome was sequenced after a massive global effort (Connors & Schorn, 2018), and researchers began to understand the mechanisms that cause cancer to grow (Krzyszczak et al., 2018). Ultimately, this led to the development of precision medicine and pharmacogenetics techniques, allowing healthcare providers to treat some cancers in a very specific way, including some cases of lung cancer. Advances in this realm have led to the development of drugs that can specifically target the action of the mutated proteins to inhibit tumor growth. Pharmaceutical companies have pushed the availability of these targeted therapies into the market (Knutsen, 2016).

Eighty-five percent of lung cancer cases are characterized histologically as non-small cell lung cancer (NSCLC). In 57% of cases, lung cancer is diagnosed after it has metastasized, and the five-year survival rate for these individuals is less than 6% (Goebel et al., 2019). In the past decade, individuals with NSCLC have been shown to carry an identifiable genetic variant in their tumor cells in more than 53% of cases. Providers use genetic findings to determine eligibility for individuals with lung cancer for targeted therapy, which has been shown to prolong survival and is often considered a first-line treatment (Rajurkar et al., 2020). Targeted therapies are not only associated with longer survival, but also fewer side effects than traditional forms of cancer treatment, such as chemotherapy and radiation therapy (Ginsburg &...