Large Genomic Rearrangements in BRCA1 and BRCA2: Implications for Patient Care

Suzanne M. Mahon, RN, DNSc, AOCN®, APNG

Hereditary breast cancer is responsible for about 5%–10% of all breast cancer cases and is frequently associated with the inheritance of a germline mutation in one of two genes, BRCA1 (chromosome 17) or BRCA2 (chromosome 13). Inheritance of a mutation in one of these genes confers a high cumulative risk of breast (90% lifetime risk) or ovarian (44% lifetime risk) cancer (Daly et al., 2013). To date, BRCA1 and BRCA2 genetic testing only is available through one company, Myriad Genetics Laboratories (MGL), as a result of patent issues surrounding these two genes. In 1996, MGL introduced Comprehensive BRACAnalysis®, which included the sequencing of BRCA1 and BRCA2. Because of technological advancement, MGL added a five-site rearrangement panel to Comprehensive BRACAnalysis in 2002 to detect five recurring large genomic rearrangements (LGR) in BRCA1. Additional technological advances led to the addition in 2006 of the BRACAnalysis Large Rearrangement Test (BART) as a separate but full LGR test for BRCA1 and BRCA2. The Comprehensive BRACAnalysis and BART tests were ordered as two distinct tests. In October 2012, Medicare approved BART as a reimbursable test, provided specific guidelines were met, based on the 2013 National Comprehensive Cancer Network guideline (Daly et al., 2013) recommending LGR testing for all patients undergoing testing for BRCA1 and BRCA2. Beginning in January 2013, MGL began incorporating BART testing into routine BRCA1 and BRCA2 testing, now termed Integrated BRACAnalysis (MGL, 2012).

Laboratory Technology

Until the addition of BART, BRCA1 and BRCA2 testing focused on the identification of point mutations (small deletions and insertions) that resulted in (a) protein truncation, (b) disruption of messenger RNA processing, or (c) amino acid substitutions that had a significant negative impact on protein function. This alteration in protein function results in altered cell function and, ultimately, malignancy. The small mutations are typically detected by Sanger DNA sequencing of polymerase chain reaction (PCR)-amplified gene segments (Judkins et al., 2012). Comprehensive BRACAnalysis testing uses PCR-based bidirectional Sanger sequencing of another mecha-

nism to detect another mechanism of gene inactivation resulting from the rearrangement of large tracts of genomic DNA.

Many of the deleterious mutations caused by LGRs were missed when the testing was restricted to PCR-based testing alone, which is incapable of detecting LGRs (Sluiter & Rensburg, 2011). Multiplex ligation-dependent probe amplification (MLPA) is the most commonly used technique to detect LGRs. MLPA is highly sensitive and relatively inexpensive compared to other genetic testing methods (Rodríguez, Torres, Borras, Salvat, & Gumà, 2010).

Pathophysiology

Arthrobacter luteus (Alu) restriction endonuclease is a short stretch of repetitive DNA. The human genome contains about one million copies of interspersed Alu that are thought to mediate chromosomal rearrangements resulting in translocations, duplications, inversions, or deletions (Ewald et al., 2009). BRCA1 is rich in Alu sequences that are associated with LRGs (Hansen et al., 2009; Machado et al., 2007; Stadler et al., 2010). To date, at least 81 different LGRs have been found in the BRCA1 gene. Alu sequences are much less common in BRCA2, which might provide insight as to why fewer LGRs are associated with the BRCA2 gene. LGRs in BRCA1 account for an estimated 8%–27% of all BRCA1 mutations (Sluiter & Rensburg, 2011; Stadler et al., 2010). LGRs in BRCA2 account for 0%–11% of all BRCA2 mutations (Stadler et al., 2010).

Ethnic Clinical History Indicators

The founder mutations, 187delAG BRCA1, 5385insC BRCA1, and 6174delT BRCA2 in people of Ashkenazi or Eastern European Jewish ancestry account for 90% of all deleterious mutations in this population (Weitzel et al., 2012). These typically are detected with the Multisite 3 BRACAnalysis. LGRs are uncommon in people of Ashkenazi Jewish background (Palma et al., 2008; Stadler et al., 2010). African and Latin American or Caribbean ancestry has been associated with a higher incidence of LGRs and may be related to a founder effect (Judkins et al., 2012). In particular, one LGR, BRCA1 ex9-12del, is considered a Mexican founder mutation and may eventually lead to a targeted panel for testing in that ethnic group similar to the Multisite 3 BRACAnalysis. Risk for LGRs also may be higher in those of Danish ancestry and Spanish ancestry (Hansen et al., 2009; Valle et al., 2010).