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T
he study of symptom clusters has become an 
important focus of oncology nursing research 
(Barsevick, 2007). Concurrently, longitudi-
nal studies of clinical phenomena in which 
individuals are measured across time have 

become common. As the study of symptom clusters 
has matured, research has evolved beyond describing 
symptom clusters to questioning the underlying pro-
cesses that lead to symptom clusters. These changes in 
research foci have led to biologic models of symptom 
clustering (Lee et al., 2004; Sonis, 2004a, 2004b) and a 
need for sophisticated statistical methods to test such 
models. 

Lee et al. (2004) proposed a general inflammatory 
model in which cancer therapies (chemotherapy or 
radiotherapy) lead to the release of cytokines that, in 
turn, generate specific clusters of symptoms in patients 
receiving treatment. In a model specific to oral mucositis 
(OM), Sonis (2004b) proposed a pathobiologic model 
of OM that models the development and resolution of 
that serious side effect of cancer therapy. Linkage of 
these models and related models represents an impor-
tant development in symptom cluster research. Both 
of the biologic models propose a longitudinal chain of 
processes that underlie the clinical phenomena under 
study. For the science to progress, researchers must use 
statistical methods that can appropriately model indi-
vidual trajectories of change, capture interindividual 
variability in change over time inherent in the models, 
and model factors that explain that variation.

The traditional repeated-measures analysis of variance 
(ANOVA), which uses ordinary least-squares estima-
tion, has long been the mainstay for statistical analyses 
of longitudinal clinical trials with continuous outcomes 
(Maxwell & Delaney, 2004). Repeated-measures ANOVA 
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is highly effective in studying mean change and treat-
ment group differences in mean change over a limited 
number of occasions with balanced data. However, it is 
less useful for the study of interindividual variability in 
trajectories of change that practitioners commonly see 
in clinical settings, specifically in the context of signs 
and symptoms related to cancer treatment. An alterna-
tive to traditional repeated-measures ANOVA is one of 
several growth-curve modeling approaches to examine 
interindividual variability in trajectories of change. 
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One commonly used method is the multilevel growth 
model in which observations (sign or symptom severity) 
over time are “nested” within a patient. The patient’s 
trajectories of change then are linked to patient-related 
characteristics (e.g., age, gender) or treatment-related 
characteristics (e.g., radiation dose) that can be thought 
of as correlates of change.

The purpose of this article is to introduce growth-
curve modeling of longitudinal data via the use of 
multilevel modeling and to illustrate the advantages 
of multilevel modeling with longitudinal clinical data 
over the traditional repeated-measures ANOVA model. 
It focuses on inter individual differences in trajectories of 
OM, a significant side effect of cancer therapy (Peterson, 
Keefe, Hutchins, & Schubert, 2006; Sonis et al., 2004).

Oral Mucositis
The current pathobiologic model of OM supports 

variations in clinical expression and is supported by 
substantial basic and clinical research (Sonis, 2002). 
Multilevel growth-curve models have the potential to 
integrate patient-based variations in clinical expression 
of OM within the pathobiologic model. Selected patient 
cohorts, including those receiving head and neck radia-
tion (Elting, Cooksley, Chambers, & Garden, 2007) or 
hematopoietic stem cell transplantation (HSCT) (Sonis 
et al., 2004), typically demonstrate predictable peaks and 
troughs in severity of OM. However, distinct differences 
in the expression of signs and symptoms often occur 
across patients, even among those receiving similar 
treatment regimens, such as high-dose chemotherapy in 
preparation for stem cell transplantation. The variation 
may be seen in different trajectories of oral mucosal in-
jury over time (the peaks and troughs noted previously) 
across individual patients. Such variation can include 
incidence and duration of clinically significant oral 
mucosal injury and can affect dose delivery of multi-
cycle chemotherapy (Peterson, Jones, & Petit, 2007). In 
addition, the number of patients with solid tumors who 
experience OM is substantially higher than the number 
of patients undergoing head and neck radiation and 
HSCT combined (Avritscher, Cooksley, & Elting, 2004; 
Elting et al., 2003). In this model, clinical changes in oral 
tissue occur because of an underlying biologic process; 
also, individual trajectories of change are quite variable, 
and the variability may be the result of a host of patient-
related (e.g., age, oral health) and treatment-related (e.g., 
type of treatment regimen) factors. To test model-related 
hypotheses, a statistical model must quantify individual 
trajectories of change and correlate the trajectories to 
patient-related and treatment-related variables. It also 
must have the potential to relate changes in one sign or 
symptom to patterns of change in other signs or symp-
toms (as a researcher might do in a study of symptom 
clustering over time). The multilevel growth model 

discussed in this article is one statistical model that is 
consistent with those requirements. 

Multilevel Growth Models
Multilevel Growth Models  
in the Study of Oral Mucositis

A need exists for novel analytic approaches designed 
to integrate the modeling of OM among individual 
patients, vis-a-vis the collective patient experience, by 
quantifying individual trajectories of oral mucosal in-
jury over time. As more and more researchers employ 
repeated-measure, longitudinal designs to study cancer 
signs and symptoms, the authors anticipate that the 
availability of longitudinal data will create a shift to-
ward the use of new models for the study of change. The 
technique described in this article, multilevel growth-
curve modeling, is one commonly used approach to the 
study of change over time.

Multilevel growth-curve modeling also can contribute 
to an enhanced understanding of the OM experience 
within a constellation of signs and symptoms in patients 
undergoing high-dose cancer therapies. The concept of 
symptom clusters has emerged as an important para-
digm in oncology (Barsevick, 2007; Dodd, Miaskowski, 
& Paul, 2001; Kim, McGuire, Tulman, & Barsevick, 2005; 
Lee et al., 2004; Miaskowski & Aouizerat, 2007). In that 
context, OM pathogenesis and clinical outcomes could 
be contributory to, or an outcome of, molecular-based 
toxicities such as fatigue associated with tumor necrosis 
factor-a, interleukin (IL)-6, IL-8, and epidermal growth 
factor (Lee et al.). The symptom clusters can exhibit 
considerable variation across patients with cancer, even 
among those receiving comparable treatment regimens. 
Multilevel growth-curve modeling may help to eluci-
date and integrate data on OM with data related to the 
collective symptom experience across patients.

Statistical Basis
The methods presented herein are based on the semi-

nal work by Bryk and Raudenbush (1992) and subse-
quent work of numerous methodologists (Curran, 2000; 
Singer & Willett, 2003; Verbeke & Molenberghs, 2000). A 
number of approaches to growth-curve modeling exist. 
Multilevel growth-curve modeling is used commonly 
because it is generalizable to other approaches, such 
as individual growth-curve modeling or latent curve 
growth-curve modeling. The approaches share a com-
mon statistical model discussed in detail later. 

As the name suggests, a multilevel model consists of 
a number of hierarchically nested regression models in 
which model parameters (i.e., regression coefficients, 
standard errors, variance components, and covariance 
components) are computed simultaneously. Typical 
longitudinal multilevel modeling involves two differ-
ent levels of equations: level 1 and level 2. The level 1 
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equations capture within-subject variability, in this case 
individual change over time, whereas level 2 equations 
capture between-subject variability. The authors de-
scribe both levels of equations in the following sections. 
After the authors present the statistical model, they 
discuss how the statistical model relates to the symptom 
experience over time in a sample of patients. 

Level 1 equations: In the level 1 equation, each indi-
vidual subject’s change over time is a separate regres-
sion equation. In other words, each subject’s outcome 
on the dependent variable(s) (erythema and pain in 
this example) is regressed onto the variable of time of 
measurement (e.g., day 1, day 2, day 3). The result is a 
regression equation (which may be linear or nonlinear) 
that represents each individual subject’s growth curve. 
The coefficients that make up the regression equation 
are the individual subject’s growth-curve parameters. 
With standard Cartesian coordinates, the Y intercept 
is the value in the outcome variable where the growth 
curve (either individual or group mean) intersects the 
abscissa axis (typically at a baseline day = 0). The linear 
rate of growth is termed slope, which is the amount of 
change in the dependent variable per unit of time. A 
quadratic term describes the amount of acceleration or 
deceleration (nonlinear increase or decrease) of the same 
dependent variable per unit of time squared. 

Equation 1 is the general level 1 regression equation 
that captures individual change over time in some out-
come (in this case, the authors used erythema to illus-
trate the process). Unlike repeated-measures ANOVA, 
which aggregates information and loses individual dif-
ferences, multilevel models retain individual informa-
tion and develop separate regression equations for each 
subject. The subscript “i” indicates an individual. The 
subscript “t” indicates time, which could be actual days 
from a baseline zero or, as more commonly encountered 
in clinical research, an ordinal series of time (e.g., first 
treatment, second treatment). 

Equation 1: Y
ti 

= p
0i
 + p

1i
 a

ti
 + p

2i
 a

ti
2 + e

ti

From equation 1, Y
ti
 is subject i’s erythema score 

at measurement t; a
ti
 is the day of measurement 

postchemotherapy (e.g., 0, 1, 2, 3) for the erythema 
score and represents linear change. The a

ti
2 term is the 

time of measurement squared and represents curvi-
linear change over time. e

ti
 is the difference between 

the observed erythema score at time t for subject i 
(Y

ti
) and the predicted erythema score. e

ti
 is a residual 

value that indicates an individual subject’s variability. 
Because the authors must estimate a separate level 1 
equation for each subject, the timing of measurement 
occasions and the number of measurement occasions 
may vary over subjects. Thus, multilevel models can 
handle unbalanced designs as opposed to traditional 
repeated-measures ANOVA. Unbalanced designs refer 
to data collection processes in which the number of mea-

surement occasions differs from one patient to another. 
The discrepancy may be a result of missing data or 
duration of treatment regimen conditions that often are 
encountered in longitudinal clinical studies. The ability 
to handle varying times of measurement and number 
of measurement occasions is critical in the longitudinal 
study of clinical phenomena.

Each subject’s level 1 equation, called a growth curve, 
consists of a function of growth parameters: a Y inter-
cept, p

0i
; a slope, p

1i
; a quadratic term, p

2i
; and an error 

term, e
ti
. The Y intercept, p

0i
, is an individual subject i’s 

predicted erythema score where time is zero (i.e., a
ti 

= 
0). Y intercepts are estimated and interpreted where the 
other variables in the equation are set to zero (Biesanz, 
Deeb-Sossa, Papadakis, Bollen, & Curran, 2004; Cohen, 
Cohen, West, & Aiken, 2003; Wainer, 2000). The linear 
change rate, or slope of the growth curve for individual 
subject i, is p

1i. 
The slope is the predicted linear rate of 

change in erythema scores per unit of time, t. In the 
quadratic model, the slope has a special meaning. It is 
the rate of change at the intercept. That is, it is the slope 
of the line passing through the intercept and tangent 
to the curve represented by the quadratic term (Singer 
& Willett, 2003). The quadratic growth parameter for 
subject i is p

2i
, and it is the rate of acceleration (or decel-

eration if negative) in erythema scores per unit of time 
squared, t2.

To illustrate the Y intercept and slope concepts, Figure 
1 shows a linear growth curve fitted to a hypothetical 
subject’s erythema scores for the first four time points 
(day 0, day 1, day 2, and day 3) using the equation de-
scribed earlier. For simplification purposes, the figure 
does not show the quadratic term. The circles represent 
the measured erythema score at days t = 0, 1, 2, and 3, 
and the dotted line is the subject’s growth curve. The Y 
intercept, p

0i
; slope, p

1i
; and residuals, e

ti
, for the subject’s 

growth curve are labeled. 
Level 2 equations: Estimation of the growth param-

eters (i.e., intercept, slope, and quadratic term) in level 

Figure 1. First Four Measured Erythema Scores  
for Hypothetical Subject’s Growth Curve  
and Its Parameters
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1 equations involves a different set of regression equa-
tions. Each growth parameter is modeled by a regres-
sion equation that captures the population main effect 
plus the variability resulting from each individual. The 
level 2 equations for the current example consist of 
three regression equations. As shown here, equation 2 
examines subjects’ intercept values, equation 3 estimates 
subjects’ linear slope parameter values, and equation 4 
estimates subjects’ quadratic parameter values.  

Equation 2: p
0l
 = b

00 
+ m

0l
 

Equation 3: p
1l
 = b

10 
+ m

1l

Equation 4: p
2l
 = b

20
 + m

2l

Recalling equation 1,

Y
ti 

= p
0l
 +

 
p

1l 
a

tl 
+ p

0l
 a

 tl
2

 
+ e

tl 

the authors substitute the bs and m’s for the growth 
parameters to yield equation 5.

Y
ti 

= (b
00 

+ m
0l
) + (b

10
 + m

1l
)a

tl 
+ (b

20
 + m

2l
) + e

 tl
  

Figure 2 shows a hypothetical grand mean linear 
growth curve shown as a solid line with the individual 
subject’s growth curve shown as a dashed line. The coef-
ficients of the level 2 equations are labeled. 

Figure 2 illustrates the relationship between the in-
dividual’s trajectory of erythema and the mean (across 
all individuals) trajectory of erythema. In the figure, the 
dashed line is identical to the line portrayed in Figure 1. 
The solid line in Figure 2 portrays the mean trajectory, 
and the parameters of interest include the parameters 
for the mean trajectory (the b terms) as well as the pa-
rameters for the deviation of the individual from the 
mean (the m terms). The parameters are described in the 
following sections.

b-terms fixed effects: Three b terms exist: b
00

, b
10

, and 
b

20
. In repeated-measures ANOVA terminology, the terms 

represent population main effects. In growth-modeling 

terminology, b
00

 is the grand mean intercept. The inter-
pretation of this mean intercept for growth modeling 
is different from repeated-measures ANOVA, which 
interprets the intercept as the value aggregated across all 
subjects and all time points. Therefore, it is the average 
value of erythema regardless of time. For growth model-
ing, the intercept typically is set to represent the initial 
or beginning value of the dependent variable at time 0 
(a

ti
 = 0). The statistical testing of b

00
 determines whether 

the intercept value differs from zero. Other interpreta-
tions of the intercept can be accomplished by centering 
the data on a time point that is not zero. For example, if 
the time variable was centered on the mean time value, 
in the current example 1.5 days (a

ti
 = 1.5), then the in-

tercept would be consistent with the repeated-measures 
ANOVA results, because the mean intercept value would 
be calculated at the mean time value. b

10 
is the grand 

mean slope, or average linear rate of change per unit of 
time for the population growth curve. Testing b

10 
against 

zero is similar to orthogonal linear contrasts in repeated-
measures ANOVA terminology (Biesanz et al., 2004). b

20
 

is the grand mean quadratic term, or average change in 
slope value per squared unit of time. 

m-terms random effects: Figure 2 illustrates two ran-
dom coefficients: m

0i
 is the random coefficient for the 

intercept, whereas m
1i
 is the random coefficient for slope. 

The term m
0i 

is the difference between the individual’s Y 
intercept (p

0i
) and the overall grand mean intercept (b

10
), 

whereas the term u
1i 

is the deviation between the indi-
vidual’s slope and the overall grand mean slope (b

10
). Re-

ferring to Figure 2, the individual’s Y intercept is higher 
than the grand mean intercept, whereas the individual’s 
slope is shallower than the grand mean slope.

Each individual has his or her own random coefficient 
m

0i
 and m

1i
 terms. The statistical testing of the variability 

of the terms is the key difference between multilevel 
modeling and traditional repeated-measures ANOVA. 
If statistically significant variability exists in any of the 
growth parameters (intercepts, slopes, and quadratic 
terms), a researcher can add predictor variables to the 
level 2 equations to explain the variability. The ability to 
use patient-level predictor variables allows multilevel 
models to explore individual differences. 

Using Raudenbush amd Bryk’s (2002) terminology, 
a model that describes the variability among growth 
parameters without predictor variables is called an un-
conditional model. An unconditional model that adds 
predictor variables to explain any significant variance 
in growth parameters is called a conditional model. The 
authors present a numerical example of unconditional 
and conditional growth modeling in the next section. 

Relationship of the Statistical Model  
to Clinical Phenomena

The model discussed earlier is a representation of how 
a sample of patients might change over time with regard 

p
0i

Figure 2. Hypothetical Grand Mean Growth Curve, 
Its Parameters, and an Individual Subject’s Growth 
Curve Superimposed
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to a single sign or symptom. The level 1 model captures 
the process of change in an individual. What clinicians 
might see as an absence of a sign or symptom at the start 
of therapy followed by a rapid development and resolu-
tion of erythema for a given patient would be captured 
as growth parameters for that patient. The parameters 
would indicate an intercept of zero and a quadratic term 
that is highly negative (the slope term is less important 
in a quadratic model than in a linear model). Just as each 
patient might show a different pattern of rise and fall 
of erythema, the level 1 parameters (the Y intercept, p

0i
; 

slope, p
1i
; and quadratic term, p

2i
) would differ. In ad-

dition, if the clinical phenomena were known to show 
a variable expression, a researcher would expect that 
the measures on individual variability in the statistical 
model (the m terms discussed earlier) would show a high 
degree of variability. Finally, just as a clinician might see 
that the progression of erythema could differ depending 
on gender or previous history, the conditional model 
discussed earlier could test that association. In those 
ways, the statistical model can be congruent with the 
clinical picture and can serve as a rigorous test of hy-
potheses that are developed from clinician experiences 
or from a biologic model such as that proposed by Sonis 
(2004a). Thus, with an appreciation of the fundamentals 
of growth-curve modeling, researchers can formulate 
questions about changes in signs or symptoms in a more 
rigorous fashion and develop hypotheses that can be 
subjected to statistical analyses.

Example of Growth-Curve Modeling 
Using Oral Mucositis and Pain Data
Parent Study 

To illustrate the growth-curve modeling approach 
to studying change over time, the authors employed 
individual growth-curve modeling to clinicians’ obser-
vational ratings of erythema and patients’ self-reported 
ratings of oral pain, the defining components of OM 
(McGuire et al., 1993). In the parent study (McGuire, 
Yeager, et al., 1998), a sample of 153 patients received 
high-dose chemotherapy in preparation for bone mar-
row or stem cell transplantation (n = 133) or for leu-
kemia induction therapy (n = 20). Although the study 
was a randomized clinical trial testing the effects of a 
psychoeducational intervention for reducing duration 
and severity of OM and pain, data from the experi-
mental and usual control groups were aggregated for 
the purposes of this analysis. After patients completed 
chemotherapy, researchers collected data from patients 
in their hospital rooms on designated study days 
(three times per week) in a manner designed to cap-
ture developing, peaking, and resolving OM and pain. 
Trained nurses and a dentist conducted observational 
ratings of OM (including erythema) using the 20-item 
Oral Mucositis Index (McGuire et al., 2002). Patients 

self-reported ratings of oral pain using the Brief Pain 
Inventory (Cleeland, 1989). The erythema score was 
computed as the mean of severity of erythema (rated 
on a scale ranging from 0 [normal] to 3 [severe] across 
nine sites in the mouth [upper and lower labial mucosa; 
right and left buccal mucosa; dorsal, lateral, and ventral 
tongue; floor of the mouth; and soft palate]). Erythema 
and oral pain scores were similar to total average scores 
reported in earlier studies (McGuire et al., 1993; Schu-
bert, Williams, Lloid, Donaldson, & Chapko, 1992). 
The focus here is on erythema as opposed to ulceration 
because ulceration was less prominent than erythema 
in the parent study data.

Modeling 

The unconditional and conditional growth-curve 
models were estimated, as recommended by Byrk, 
Raudenbush, and Congdon (2002). In the process, the 
researchers estimated a quadratic form of the trajectories 
of erythema over eight time points that were defined 
as study days. The quadratic form was chosen because 
previous reports of OM have indicated this type of tra-
jectory (McGuire et al., 1993; Sonis, 2004a; Woo, Sonis, 
Monopoli, & Sonis, 1993). Models were conducted with 
no centering, so the intercept is equivalent to the level 
of erythema and pain at the beginning of the study, the 
linear slope indicates the rate of change per unit of time, 
and the quadratic term indicates the curvature (accelera-
tion or deceleration) of erythema and pain scores. 

The first analysis conducted was an unconditional 
model to inferentially test that the intercept, slope, and 
quadratic terms were different from zero and to inves-
tigate whether the individual differences in the growth 
parameters had sufficient variability. The second analy-
sis consisted of adding the predictor variable of gender 
to explain residual variance (variability), thus creating 
a conditional model. The models’ equations with inter-
cept, linear, and quadratic parameters for erythema are 
shown next. Parameter estimates for both erythema and 
self-reported OM pain are shown in Table 1. 

Level 1: Y
ti
 = p

0l 
+ p

1l
 a

tl 
+ p

2l
 a

tl
2 + e

tl

                 Level 2:  p
0l
 = b

00
 + m

0i

                                                        
p

1l  
= b

10
 + m

1l

                                                        
p

2l
 = b

20
 + m

2l

Unconditional model results: The model for erythema 
demonstrated no centering of data, which allowed b

00 
to 

represent the mean intercept at the beginning of the study. 
The estimate b

00 
= 0.0313 was not statistically significant 

from zero (i.e., patients began the study with no erythema 
on average). b

01 
was the mean linear rate across time, and 

the estimate b
00 

= 0.1433 was statistically significant from 
zero, indicating an increase in erythema at the outset of 
the study. The estimate b

20
 = -0.0065 was negative and 

differed significantly from zero, indicating that, on aver-
age, subjects’ erythema first rose and then declined (recall 
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that the quadratic term is a nonlinear change, which can 
be seen by the downward curvature of erythema scores 
in Figure 3). Similar results were obtained with uncon-
ditional modeling of self-reported OM pain over time 
(see Table 2). Thus, in erythema and oral pain, the overall 
process of change was similar, the intercept was zero, 
severity increased at the start of the study, and resolution 
(or partial resolution) occurred as the study progressed. 

Investigation of the variance components among sub-
jects’ linear slope and quadratic random effects (i.e., T

11 

and T
22

) revealed that both the linear slope and quadratic 
random effects differed significantly from zero, indi-
cating variability in linear growth rates and quadratic 
effects among subjects that may be accounted for by ad-
ditional predictor variables. The nonsignificant random 
effect of intercept indicates no variability in initial levels 
of erythema that could be accounted for by predictor 
variables. Thus, the random effect for intercept was 
dropped from the unconditional and conditional model. 
Explaining the significant variance among subjects’ 
growth parameters (e.g., linear slope, quadratic effect) 
demonstrates how growth modeling better represents 
individual differences in forms of change over time 
compared to repeated-measures ANOVA approaches.

Conditional model results: By adding the predictor 
variable of gender to the unconditional model for ery-
thema and pain, the researchers obtained the following 
equations. 

Level 1: Y
ti 

= p
0l
 + p

1l
 a

tl
 + p

2l
 (a

tl
2) + e

tl

                Level 2: p
0l
 = b

00

                 p
1l
 = b

10 
+ b

11 
(gender) + m

1l

                 p
2l
 = b

20 
+ b

21 
(gender) + m

2l
 

For the conditional model, gender 
was coded as female = 0 and male = 1. 
Like the unconditional model, no cen-
tering of data occurred, which allowed 
b

00
 to represent the mean intercept at the 

beginning of the study. Investigation of 
the conditional erythema model indi-

cated that, similar to the unconditional 

model for erythema, the estimate b
00 

= 

0.0322 was not statistically significantly 

different from zero. Interpreting the 

other growth parameters requires some 

care. b
10 

was the mean linear rate across 

time when gender = 0 (i.e., female), and 

the estimate b
01 

= 0.1158 was statistically 

significantly different from zero. The 

estimate b
20

 = –0.0052 was the average 

curvature when gender = 0 (female) 

and was significantly different from 

zero. b
11 

= 0.0638 was the additional 

linear slope when gender = 1 (male) 

and was significantly different from 

zero. The additional linear slope effect 

for being male is illustrated in Figure 4, where the males 

show a faster rise in erythema severity than females. 

The estimate b
21 

= –0.0030 was the additional quadratic 
estimate when gender = 1 (male) and was significantly 
different from zero. The additional quadratic effect for 
being male also is illustrated in Figure 3, where the males 
show a sharper decline in erythema severity past the ze-
nith (i.e., more curvature). Investigation of the variance 
components among subjects’ linear slope and quadratic 
random effects (i.e., t

11
 and t

22
) revealed that both the linear 

slope and quadratic random effects differed significantly 

Table 1. Results for Unconditional and Conditional Growth Models  
of Erythema

Fixed Effect

  Unconditional Model

   Estimate              SE

     Conditional Model

   Estimate                SE

b
00 

= intercept 0.0313 0.0275  0.0322 0.0276

b
10 

= slope 0.0433*** 0.0122 0.1158*** 0.0151

b
20 

= quadratic –0.0065*** 0.0006 –0.0052*** 0.0007

b
11 

= gender (slope)       –                       – 0.0638**  0.0215

b21 
= gender (quadratic)       –                       – –0.0030** 0.0010

Random Effect   Variance Component    Variance Component

m
1i

      t
11

 = 0.0150***      t
11

 = 0.0141***

m
21

       t
22

 = 0.0000***      t
22

 = 0.0000***

eti        s2 = 0.1678       s2 = 0.1682

*p < 0.05; **p < 0.01; ***p < 0.001

SE—standard error

Figure 3. Growth Curve for Unconditional Model
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from zero, indicating variability in lin-
ear growth rates and quadratic effects 
among subjects that may be accounted 
for by additional predictor variables 
besides gender. Self-reported ratings of 
oral pain showed very similar results; 
the growth parameters are included in 
Table 2. 

Discussion

This article delineates the utility 
of multilevel growth-curve model-
ing to the study of change over time. 
The authors demonstrated that util-
ity by the application of multilevel 
models to repeated measures of OM 
(clinician-rated erythema and patient 
self-reported ratings of oral pain). The 
results for erythema and pain were 
consistent with previous reports in the 
literature (McGuire et al., 1993; Schu-
bert et al., 1992; Sonis, 2004b; Woo et 
al., 1993). The quadratic models of change also resulted 
in significant models commensurate with published 
reports of patterns of OM based on typical mean scores 
(McGuire et al., 1993; Schubert et al.; Sonis, 2004b; Woo et 
al.). In addition, the curve parameters of erythema were 
associated with gender, which also is consistent with 
reports of factors associated with OM (Avritscher et al., 
2004). Another important outcome of the analyses is that 
the results help support or extend understanding of the 
pathobiologic model of OM (Sonis, 1998, 2004b), includ-
ing clinical manifestations, correlates, and risk factors. 

This article is the first report, to the authors’ knowl-
edge, to examine the utility of multilevel growth-curve 
analysis in studying changes in OM over a clinical tra-
jectory. Future studies could employ similar methods 
to test predictions based on the evolving pathobiologic 
model of OM (Anthony, Bowen, Garden, Hewson, & 
Sonis, 2006; Sonis, 2007; Sonis et al., 2007; Sonis, 1998, 
2004b), with the aim of adding to existing knowledge 
about this critically important side effect of high-dose 
chemotherapy. For example, multilevel growth-curve 
analysis might be used to predict whether individual 
trajectories of change in erythema and ulceration are 
related to patient-related (e.g., demographic) or treat-
ment-related (e.g., diagnosis, treatment regimen) vari-
ables or to underlying mechanistic processes indicated 
by biologic measures such as cytokine levels. Thus, 
this analytic strategy could contribute to an enhanced 
understanding of pathobiologically based individual 
variations in the clinical expression of OM. 

Another critical advantage of using multilevel 
growth-curve analysis is that analyses could lead to 
fuller integration of mechanistic and etiologic models 

such as Sonis’ (2004a) OM model into the broader con-
text of symptom clusters in patients with cancer (Barse-
vick, 2007; Kim et al., 2005; Lee et al., 2004; Miaskowski 
& Aouizerat, 2007). For example, the pathobiologic 
model of mucositis suggests that the complex processes 
underlying the development of OM also may be impli-
cated in the development of other signs and symptoms 
that are observed concurrently with mucositis, such 
as pain, sleeping alterations, fatigue, and emotional 
distress (Gaston-Johansson, Fall-Dickson, Bakos, & 
Kennedy, 1999; Lee et al.; McGuire, 2002; McGuire et al., 
1993; McGuire, Owen, & Peterson, 1998; Miaskowski & 
Aouizerat). With increased knowledge of underlying 
causative mechanisms and new ways to analyze change 
over time in multiple signs or symptoms, the interrela-
tionships of pathobiology and clinical trajectories may 
be explored in ways that advance understanding of 
symptom clusters more rapidly. 

Another potential use of this methodology is in the 
analysis of other symptoms (e.g., fatigue) or combina-
tions of signs and symptoms (e.g., OM, pain, fatigue). 
It could be an important new approach to analyzing 
potentially complex relationships among symptoms in 
patients with cancer. Finally, this method offers useful 
advantages for current and future work on uncovering 
processes that underlie the clustering of symptoms, 
consistent with recommendations by numerous experts 
(Barsevick, 2007; Barsevick, Whitmer, Nail, Beck, & Dud-
ley, 2006; Kim et al., 2005; National Institutes of Health, 
2002). Relevant targets could include proposed models 
for relationships among symptoms such as Lee et al.’s 
(2004) cytokine model and Parker, Kimble, Dunbar, and 
Clark’s (2005) symptom interactional framework.

Table 2. Results for Unconditional and Conditional  
Growth Models of Self-Reported Oral Pain From Mucositis

Fixed Effect

  Unconditional Model

   Estimate              SE

     Conditional Model

   Estimate                SE

b
00 

= intercept 0.0570 0.0984  0.0586 0.0985

b
10 

= slope 0.4193*** 0.0400 0.6993*** 0.1165

b
20 

= quadratic –0.0206*** 0.0020 –0.0349*** 0.0059

b
11 

= gender (slope)       –                       – –0.1780*  0.0696

b21 
= gender (quadratic)       –                       – 0.0091* 0.0036

Random Effect   Variance Component    Variance Component

m
1i

      t
11

 = 0.1471***      t
11

 = 0.1403***

m
21

       t
22

 = 0.0003***      t
22

 = 0.0003***

eti        s2 = 2.1893       s2 = 2.1933

*p < 0.05; **p < 0.01; ***p < 0.001

SE—standard error
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Limitations
As with any research, the results presented herein 

have some inherent limitations. First, they reflect a sec-
ondary data analysis from a study testing the effects of a 
psychoeducational intervention in reducing the duration 
and severity of OM and oral pain in patients receiving 
high-dose chemotherapy, so the data were analyzed for 
different purposes than intended in the original study. 
Second, considerable data were missing beginning at 
about 14 days after initiation of chemotherapy because 
of patient discharges from the hospital, which limited 
the researchers’ ability to apply the growth-curve tech-
niques across the full trajectory of signs and symptoms. 
Substantive studies may require the use of sensitivity 
analyses to control for biases resulting from data that 
are not missing at random (Diggle & Kenward, 1994; 
Troxel, Harrington, & Lipsitz, 1998).

Conclusion
This article illustrates the potential utility of multilevel 

growth-curve modeling techniques in the study of change 
in signs and symptoms over time. The results relative to 
the analysis of erythema are consistent with previously 
published studies and extend the modeling by delineat-
ing several patterns obscured by traditional analyses 
of mean scores. Knowledge of these patterns may help 
clinicians approach assessment differentially, depending 
on treatment and other factors. The multilevel growth-
curve modeling technique appears to be well suited to 
complex modeling of multiple signs or symptoms and 
related outcomes. The method may enhance the ability 
of researchers to analyze results of the complex data that 
emerge when symptom clusters are being studied. The 
data include the process of change in clinical signs and 
symptoms and the relationship of such processes to other 
individual and clinical characteristics of patients, as well 
as to underlying mechanistic models.
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